An iterative method for systems of nonlinear hyperbolic equations

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN ITERATIVE METHOD WITH SIX-ORDER CONVERGENCE FOR SOLVING NONLINEAR EQUATIONS

Modification of Newtons method with higher-order convergence is presented. The modification of Newtons method is based on Frontinis three-order method. The new method requires two-step per iteration. Analysis of convergence demonstrates that the order of convergence is 6. Some numerical examples illustrate that the algorithm is more efficient and performs better than classical Newtons method and ...

متن کامل

High order quadrature based iterative method for approximating the solution of nonlinear equations

In this paper, weight function and composition technique is utilized to speeds up the convergence order and increase the efficiency of an existing quadrature based iterative method. This results in the proposition of its improved form from a two-point quadrature based method of convergence order ρ = 3 with efficiency index EI = 1:3161 to a three-point method of convergence order ρ = 8 with EI =...

متن کامل

An Iterative Method with Fifth-Order Convergence for Nonlinear Equations

In this paper, we suggest and analyze a new four-step iterative method for solving nonlinear equations involving only first derivative of the function using a new decomposition technique which is due to Noor [11] and Noor and Noor [16]. We show that this new iterative method has fifth-order of convergence. Several numerical examples are given to illustrate the efficiency and performance of the ...

متن کامل

A Third Order Iterative Method for Finding Zeros of Nonlinear Equations

‎In this paper‎, ‎we present a new modification of Newton's method‎ ‎for finding a simple root of a nonlinear equation‎. ‎It has been‎ ‎proved that the new method converges cubically‎.

متن کامل

Parallel Alternating Group Explicit Iterative Method For Hyperbolic Equations

In this paper, we present a four order unconditionally stable implicit scheme for hyperbolic equations. Based on the scheme and the concept of decomposition a class of parallel alternating group explicit (AGE) iterative method is derived, and convergence analysis is given. In order to verify the AGE iterative method, we give an example at the end of the paper.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1991

ISSN: 0898-1221

DOI: 10.1016/0898-1221(91)90223-q